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1. Introduction and Statement of Results

In a recent paper [1) MacCamy considered the following model for one-

dimensional nonlinear viscoelasticity: (u = displacement)

t
(I-i) utt = a(O)a(u) J0 a (t-T)a(u ) d- + 3,

on (0,1)x [0,-) , subject to initial and boundary data of the form

I'u(0,t) =0, u(lt) =0, t>0

(1.2)

u(x,0) = f(x) , ut(x,0) = g(x) , 0 < x <1.

MacCamy showed that the above initial-boundary value problem has a unique

classical solution for all t when 3 is suitably restricted and the data

f,g are sufficiently small; furthermore, the solution is asymptotically

stable, i e., tends to zero as t-+ . The essential hypotheses in 11

are that a(t)= a +G(t), a >0, GELI(O,-), (-I)ka(k)(t) 0

k=0,1,2, a(O) =0, a,'(C)> >0, and a(C)l < , k=0,1,2 for

all C, as well as various smoothness assumptions relative to a, f, g,

and 3 and boundedness and growth conditions on 3. In addition, it may be

assumed, without any loss of generality, that a(O) = 1.

The model (1.1), (1.2) considered by MacCamj is intermediate between

two extremes, i.e., the cases where (1.1) is replaced, respectively by the

equations

(1.3) utt = (U), (x,t) E (O,1)X [0,)

'- R FO P.C F FrT ( F 'TTT C RE MS ARCH (AFSC)
I C- El 7 11.".. " '. , TO DDC
C:: . * , 'T .; revOeDed and is
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and

(1. 4) ut = ( U

Equations (1.3), (1.2) model the standard initial-boundary value problem

for one-dimensional nonlinear elasticity and it is well-known that if

is genuinely nonlinear this problem does not have a smooth global solution

for any non-zero data (Lax [9)). Knops [2] has shown that global existence

fails for (1.3), (1.2) when there exists a strain-energy function E (i.e.,

a(C) Z'( ) , for all C) such that aE(C) > CV'() for some a > 2 and

all C. On the other hand, the initial-boundary value problem associated

with (1.4) always has a global smooth solution which is asymptotically stable

no matter how large the initial data f,g are ([3], [4)). It is conjectured

in [11 that global existence of solutions fails for (1.1), (1.2) if the data

are too large.

In the present work we consider the model (1.1) subject to the following

assumptions: a(O) = 1, = 0 , and a(c) = '(C) with aE(C) > C'(C) for

all C and some a > 2. We also assume that there exists a > 0 (finite)
s at '() < Yeer 1

such that <a, ; no sign definiteness conditions are improsed

on the a(k)(t) , k = 0,1,2 . Then, under appropriate conditions on the

initial data, we will show that any sufficiently smooth solution of (1.1),

(1.2) on [O,T) , which lies in the class

(1.5) C = Lu: [0,T) - Hl0,1) sup 11u.1 < C]
[0,T) -J

0



for some real number C > 0 must satisfy the quadratic growth estimate

(1.6) Hull > Ifll + 2vIjfII t + v2t2 , t E [O,T)

L2 L2 L2

where v > 0 is an appropriately chosen constant. Other growth estimates

may also be gleaned from the analysis which we will present below, under

various assumptions relative to the initial data, but we do not present

these explicitly here.

Remarks. M. Slemrod [8] has recently proved global nonexistence results for a

problem which is closely related to (1.1), (1.2). Slemrod considers steady

shearing flows in a nonlinear viscoelastic fluid with the shearing stress

given by

(1.7) a(fe-Xrv x(x,t-T)dT)

a a nonlinear, odd, real analytic fucntion, X a positive constant, and

v(x,t) = {(x,t) the fluid velocity; using the cited constitutive assumption

the evolution equation in [8] has the form

(1.8) utt (f0 e U (Xt-r)dT)

provided we set the mass density p = 1. If we assume the same kind of

decaying exponential memory in (1.1) as is assumed in [8], allow in (1.1)

for a prescribed past history on (- ,0] , integrate by parts with respect to

T and then make the obvious change of variables in the integral, it is clear

that (1.1) is equivalent to



(19.utt 1 - x

The particular choice of history dependence chosen in [8], i.e., a(t) = e - 1t

and, more essentially, the particular choice of how the nonlinearity a(c)

enters the constitutive theory (and, hence the evolution equation (1.8))

allows the boundary-initial history value problem for (1.8) in [8] to be

transformed into an initial-boundary value problem for a nonlinear hyperbolic

conservation law with linear damping; hyperbolicity for the transformed

problem in [8] is shown to be equivalent to the condition a'(C) > 0. Once

the problem in [8] has been transformed into an equivalent problem for a

nonlinear hyperbolic conservation law with linear damping, it is shown to be

amenable to analysis based on the use of Riemann invariants and an argument

due to Lax [9] to prove that singularities develop, in the solutions of non-

linear hyperbolic equations, in finite time for sufficiently large initial

data; in fact, Slemrod [8] shows that if the initial data are sufficiently

large in certain Sobolev space norms then the second derivatives of the

solution develop. discontinuities in finite time while the first derivatives

-remain continuous and bounded(l). The difference in the way in which the

nonlinearity a enters the evolution equations in the models of viscoelastic

response considered, respectively, in [1] and [8], i.e., (1.8) as opposed to

(1.9), seems to preclude an analysis similar to that in [8] being effected

vi's a vi's the boundary-initial history value problem for (1.9). In fact

the transformation in [81 is effected as follows: Clearly (1.8) is equivalent

(W)An exposition of Slemrod's work may be found in his recent Lecture [11]

as well as in the forthcoming monograph by this author [13].



= C(SO e- (x,t-T)dT)t o x x

or vt = a(w) x

if we set w(xt) = O e-Xsv (x,t-s)ds
0

Now let r(xt) =f e v (xt-s)ds, which is equivalent to

r(x,t) v(x,t) - f O e-Sv(xt-s)ds

and which, in turn, implies that

04
r t(x,t ) = vt(x,t ) - X fO e-XS vt(x't-slds

= vt(x,t) - r(x,t)

Clearly, then (1.8) is equivalent to

(wt(x,t) = rx(x,t)

(i.I0)

rt(x,t) = a(w(x,t))x - Xr(x,t)

a strictly hyperbolic system if a'(C) > 0; a similar reduction is not

(2)
possible for the evolution equation (1.9) Thus, the global nonexistence

results proven by Slemrod in [81 cannot be carried over to the model of one-

dimensional nonlinear viscoelastic response considered in [1] so as to deduce

global nonexistence of solutions for this case as well. We note that both

(2)Note that the system (1.10) is equivalent to a homogeneous damped nonlinear

wave equation for w(x,t) , i.e., wtt+Awt-a(w)xx 0; it is shown in [111

(see also Nohel [12]) that (1.9) is equivalent to a nonhomogeneous damped
nonlinear wave equation of the form utt +Xut -(Ux) x = .kx,t).



(1.8) and (1.9) reduce to the one-dimensional nonlinear elasticity evolution

equation (1.3), for A = 0, provided lim I ux(x,t)I = 0 uniformly in x,

and both constitutive assumptions, which lead to these respective evolution

equatizzis, are consistent with the principle of fading memory for simple

materials, i.e., [101.

2. Proofs of the Basic Estimates

As a prelude to proving the growth estimate (1.6), delineated in the last

section, we first need to derive a suitable expression for the energy associa-

ted with our one-dimensional nonlinear viscoelastic model. We define the

total energy to be

111

(2.1) '(t) a [a(x,t)] 2dx + j E(ux(x,t))dx

so that

(22) ~ () 1 1
' (2.2) M()= dx + 0E'(Ux) dx

J'O +o x

1 1

Z1 a u ) dx +' E'(u ) dx

I t
-J0 f0 a(t- )a X(U)xddt

or, in view of the fact that E'(C) = a(C) , for all C,

1 1

(2.3) Sot = L- (V (u x))dx + So E'(u )t1X dx:
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1 t
-~~~ j'~ (t-T) (u)'d

= E (U dx -
0x

a i a(t-T) -L- (V(U ))drdX

=-fo Z(x,t) JO a (t- 6x (

in view of the boundary conditions (1.2 1). For the sake of convenience we

now set A(t-T) =a T(t-T) . Then integration of (2.3) yields

t 1 T1
(2J.4) 6(t) 8 (0) =-5 [0 a~(X,T) fo A(r-X) -L--E'(u xX)~xd

0 fo6 ux,)dxdT

However,

d- 5U(X,i) 5A(--X) 6 E'(u (x,X))dXdx
TTf0 0x

dl 1

T 1 f U(u (T)a~ x ( Xa(x,x)~dx~d

0 0o

1 !

-5 iUiX,') so' A(Tr-X)a(u (x,X) xdXdx +

I 0T

5 u(x,i) 5o A T (TX)a(u X(x,))) xdXdx +

1

A(O) f. U(X,Tra(U (X,T)) xdx
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But, A(O) = A(t- ) I = - -(o)
It-- t --T

by virtue of our hypotheses on a(t) . Thus,

d 1 T
(. So u(x,,) S A(T-E) A.'(u (x,X)ddx

5o T(x,) , "° A(-X)o(ua(x,X ,%dX dX +

0 o

1

- (o) 0 u(x,,r)a(ux(x,T))dx

T0
1 I

Substituting for So ZL So A(T-X)o(u )dXdx from (2.5) into (2.4) and

performing the indicated integration we obtain

1 t
(2.6) 5(t) - d(O) = -5 u(x,t) 5 A(t-T)a(Ux(x,))xdTdx

t 1 T

+ 0 [50 u(x,T) fTA (T-X)a(U (x,X))xdXdx]dT

t 1
- b(o) o f u(xT)a(U(XT)) dxdT

i.e., we have the following

Lemma For the one-dimensional nonlinear viscoelastic model (1.1), (1.2)

where E(() = ) for all C , the total energy 6(t) is given by
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(2.7) 6(t) g2 (x)dx + 'E(f'(x))dx
0 0O

1 t

- f u(x,t) f A(t-)(Ux(x,))xddx
0 0

t 1
+ fO [E0 u(x,-) f0 A(T-X)a(U(xX))xdkdx]dT

t 1
- a(0) fO f ° u(x, )a(u (x,T))dxdr

Remarks. We note that 5(t), as defined by (2.1), satisfies d(t) > 0,

Vt > 0; this is a direct consequence of the fact that our assumptions

relative to a(C) imply that E( ) > 0, VCER In order to see that

we must have Y(C) > 0, YC ER 1  we first delineate our basic hypotheses,

namely,

(2.8a) SF>0 such that la'(C)l _< , YCER 1

(2.8b) S > 2 such that UE(C) > C'(C) , CER

Now, by (2.8b), (o) > 0. Also, for C / 0, d(- ) = C )i
'ds ea

Therefore, for C > 0, we have by (2.8b), d c < 0 so that E)
dC

is nonincreasing on (0,co) and lim L > 0. By (2.8a) we have thatC.-0 +  el

EC)~ EC)I+C 0)C 1C
a(C) I < ja(o)I +aiC1 and a (01 < 17(0)I + Ia(0)I Ic! + As a >2,

(3) This fact was noted by a reviewer who read an earlier version of the
manuscript and it is his proof of this fact that we reproduce below.
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therefore, we have VO < f( (O ) I I0 + s. s Cc as

Thus, is nonincreasing on (0,-) and satisfies Ur Z(C) > 0 andC~~ ¢-0o+,

lira Jm. = 0; hence, 7c(C > 0 for >0 which implies that E(C) > 0

for > 0 •Now, define A(C) -- E(-C) .Then A'(C) = -V'(C) and, by (2.8b),

_ = .Repeating the argument given above yields

the conclusion that A(C) > 0, V C .> 0 and, thus, F(C) > 0, VC < 0. We

conclude that E(C) >0, VCER l , and thu £(t) >0, Vt>O.

We are now ready to prove the main result of this paper, namely, the
quadratic growth estimate (1.6) for the L2  norm of sufficiently smooth

solutions of (1.1), (1.2) which lie in the class C. For the remainder of

the paper we will assume that a(t) satisfies the smoothness hypotheses

t T t 1/2
(2.8c) sup J [ (t-T)IdT <-, J (f *2(t-)d)dt <

(0,T) 0 0 0

and we set

t T t 1/2
V l1 u S up(t-r)Id + (/"T (t-T)d) dt

-T a [ O/+1 O,T) SO 0

6 Max (d(0) , '_TK2

Then, we have the following

Theorem. Consider the nonlinear one-dimensional viscoelastic initial-boundary

value problem (1.1), (1.2) with a(O) = 1 and 3 = 0(  . if

(4) Without loss of generality we may also assume that a(O) = 0; for ease
of exposition this is assumed in the proof below.



uEC2((0,1)x[O,T)) n a is a solution of (1.1), (1.2) with initial data

satisfying

1 1 /2 2a8
(2.9) So f(x)g(x)dx > V(So (x) dx) v -a-1

then IIu(t)IIL2 (0,1) satisfies the quadratic growth estimate (1.6) on [0,T).

Proof. Define U.(t) u 11.12 1 2 (xt)dx, t > 0.
L2 0.

Then

(21)i~t 1 1.

(2.10) ()= 2f0 u~idx, Ui(t) = 2' uiidx + 2f udx

or, in view of (1.1)

1 1.
(2.11) i(t) = 2f u-L-V(u )dx + 2 1 dx

0 bx x 0o

1 t

0 x

1 t
-2f0 u ( A(t-T)u(x t)'(u x")d')dx

1 t+ 20 &0 A(t-)u(xt)E'(U(xT))ddx

1 t

+ 2f0 0 A(t-,r)U x(X't)E'(U x(XT))drdx

+ 2 u 2dx

=2f u E'(u)dx +2f u dx
x

i t
+ 2f' fo A(t-T)UX(X,t)E'(UX(X, ))dTdx
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again, in view of the homogeneous boundary data (1.21). Adding and subtracting
1

2a f E(u (x,t))dx, a > 2, in the last line of (2.12) we obtain
0

1

(2.12) 2(t) 2 (aE(ux(xt)) - ux(x,t)E'(ux(x,t))dx
0

12 1+ 2(x,t)dx - a'

+ 2f j A(t-T)U (X,t)'(u (X,T))dTdx
0 0

12 1
1> 23 u2(x,t)dx - 2c E -(u (x,t))dx

0 0

1 t
+ 2f A(t - ')u x (xt)E ' (u x (x,' ))d ' dx

in view of our hypothesis (2.8b) relative to Z( ) . Combining (2.122)

with the definition (2.1) of c3(t) now yields

(2.13) U(t) > 2 2 (x,t)dx - 2u(S(t) - 2 (xt)x)

1 t
+2 3O A(t-,)Ux(X,t)E'(Ux(x,,))dTdx

12

(241a) S0 u (xt)dx - 2az(t)

I t
+ 2 so A(t-T)Ux(X,t)E'(Ux(X,T))ddx

We now make use of the preceding lemma to substitute for 6(t) in (2.13)

and, in this manner, obtain

a
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(2.14) (t) > (21a) 1 -.2dO

0

1 t
+ 2a So u(X,t) So A(t-T)a(u (x,.r))XdTdx

t 1
+ 2aa*O f [f U(x,)a Aro(u x (xx)dT d~

00 0

1ti

+ 2 So fo A(t-1r)u (x,t)LV(u (x, ))dTdx.
00x

From (2.10) we have

(2.15) 2( 1 ,cx 2

and therefore

(2.16) (2.<t +a u (2tc)[ u dx

-fu~dx) 2 2A~?t) 8(0)
0

2UI4() [1 u~x TS A (TX)a(U(x,X))dXdx)dTr

I t
- So So A(t-.r)u(x,t)a(uX(x,r))&Trdx

1it
-o f 5 A(t-,T)u (X,t)dr(U (X,T))dTdX

00x



114

t 1
+ AMo J U(X.T)9(ux (x,7)) x

T)

2C44.(t) ( -(,S(0)) -

0 0 0

+ Sfo A(t-T)u(x,t)a(u (x,,r)) dTdx

t 1
+ &(o) so 5o U(X,.)a(u x(xT)) xdxd T)

1* by virtue of the Schwarz inequality and our hypothesis relative to d(o).

However,

1it+5 fof A(t-T)U(X,t)a(u (x,.r))xd~dX

1i t

- (JS A(t-T)U(X,t)a(u (x,T))ddX

it
- 5 5 A(t-T)U (x,t)a(u (x,))drdx

in view of the homogeneous boundary conditions relative to u(xt) and,
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therefore, (2.162) may be rewritten in the form

(2.17) ((t)2.(t) ,Q+2, .2, +

'U --}t) 4 (t) ?>-2a(t (O

So [1 u(xT) So A (-X)a(u x (x,)) xdxd']dx

1 t

+ fi - ) A(t-T)U (2c,t)F(U (X,T))dTdX

t1
- &(o) 50 0 U(X)o(ux(XT))(x(xdT)

Our aim, at this point in the proof, is to bound, from above, the three

integrals on the right-hand side of (2.17). To this end we have the

following series of estimates (beginning with the second integral expression):

1 t
If0 5O A(t-r)u(xt)a(u (xT))ddxl

t 1
<o JA(t-T)I So Iu(x,t)ta(u (x,,T))IdxdT

O 0

t 1 1/212

< .o IA(t-T)!(S U (x,t)dx) Cfa (U (X,T))dX) dT
0 0 0

t 1 21/2
< Ilu(-'t)ll 1 j0 I A(t-,r) I a2(u x(X' ))dx) dT

HO 00s

However, in view of (2.8a)
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Ja (u (x,'r))dx < a 2jo u 2(x, r) dr

and, therefore

I t
(2.18) IJ fo A(t-T)u (x,t)a(U (X,T))dTdxI

t

H0 0O

2t
:s(sup I1u& ,t)II i) fo IA(t-T)IdT

<~sup Ilu(',t)111) sup f 1&(t-T)fdT
10,T) 0 [0,T) 0

Next, if we integrate by parts in the first integral on the right-hand

side of (2.17) and estimate as in (2.18) we obtain

1 t T
[f 5 U(X,T) f5 A (T-X)aF(U (x,%)) ddr]dXl

= 155 uX,T) A A(.-X)a(u (x,X))dkdT]dxl

Ft 1 or
= I [ ux,.r)(fo A (T4)a(U (X,))d)dX]dI

t 1 T
SSIfo u (x,i)(f A (T-X)a(U (X,X)dX)dXfdT

00 0
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f (f u(X.,r)dx) 1/2 1 T2~ 1/2
0o 0 u O(oA(T-)X)a(U(X,))iX) d)

t 1 'T 2 1/2
<sup IIu(,It)i1 1 Jf (Sf Cf A (T-X)a(U (x,X))d) dx) dT

[,)H0 0

However,

JO(OA T(.-X)a(u x(x,%))dk)d

T 2  1 T 2
< f AT (.r-Xd?, fo J a (u x(x,%))d7,dx

o 001sos

and, therefore,

(2.19) uX,.r) fO A Cr-X)(u (x,),))xdiKdxI

asup IlU((S! A Q-X)dk)
(T) H0  0 0

T 1/2

(f ~u.,~j 21 dX) d
0 H0

=fiCsup IluC. It) 11 )2 Jf Cf .A(t)d)1/d

[0,T) H0 0s 0
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Finally,

t1

t I(22)t 1 (2x T(Uxu x,,.r) xdx /l-J
1ff u~X,)a(u (X,))dXdTl

t 1 1/2 12 1/2
(sf Uf (X,T)dX) (5 aU (X,T))dx) dr
00 0

< -sup IUu(.,t)II t 1 ( 2 u(x, )dx) 2dT
[0,T) 06 0 0

< a T( sup Iu(",t)l 12
0[o,T) H

Combining the estimates (2.18)-(2.20) with (2.17) then yields the differential

inequality

(2.21) 2(t)2U(t) - +2)f(t)

> -2a 2.(t)( (0) + ;T I sup II -' ,t)lI 121- [,T) Ho 0

>-2a ?4(t)(d(o) + aTC2 )

> -hab U(t),• !

in view of the definitions of xT' 5 and our hypothesis that u( ,t)e C'. If

2
we now set y = (cc- 2)/4 and define v 2oa5/(2y +1) = a/(a - 1) then (2.21)

has the equivalent form

I!
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(2.22) t(t)2(t) - ( +l)f(t) > -2v2 (2y+)U(t) , 0 < t <T

a differential inequality which has appeared several times in the recent

literature on ill-posed initial boundary value problems associated with

nonlinear partial differential equations of hyperbolic and parabolic type;

indeed, by (2.9) and the definition of U4(t) , i(O) > 0 and, thus '.(t) > 0

for te [0,J) • Following the analysis in Levine [14], therefore, we may()0

multiply both sides of (2.22) by -y(2-Y(t))' (-(<+2) (t))" , for te [0,J)

and integrate both sides of the inequality over [o,t) so as to obtain

(compare with [14], 11-15) for te [0,r)

(2.23) [(I-f(t)']2 - 42 2-(2y+I ) (t)

> [(-y(O))']2 
- 22 2 S -(2y+l)(0) > 0

where the right-hand side is positive by virtue of the definition of 7{(t)

and our hypothesis (2.9) relative to the initial data. Proceeding as in [14]

we factor both sides of (2.23) and rewrite the inequality for te [0,1] as

(2.24) by (' (t)"- 2y%4 - (Y+112 ) (t)) (Z(- t)'+ 2yA _ (Y+112 ) (t)

_(1%'(-()'- 2yv'(-((y+1/2) (0)1)(%(-%(0)lt+ 2yv?4 (yt+1/ 2 ) (0))

Again, by (2.9), the factor 'Y(0)1+2yV-(y+1/2)(0)) < 0 and thus, as

neither factor in (2.24) can change sign on [0,1] (by virtue of our smoothness

assumptions relative to 'U(x,t)) we have

(5)At this point we use also the I notation for differentiation w.r.t. t,

i.e. ( ) = ( ) , the new notation being introduced so as to avoid

expressions like (2'f(t))
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(2.25) 1j'Y (t' < -2y-, ('+1/2) (t) , t G [0, 1]

Now, suppose that 0? ) = 0. Then by (2.23)

412 - y2 v2 1-(2y+l) (t]t =

= -4l y v ( < 0

contradicting the fact that (2.23) holds at t = 7]. Thus, 2(t) > 0 for

te[0,T) and (2.23), as well as (2.25), hold for t e[O,T); direct

integration of (2.25) then yields the estimate

(2.26) 2U(t) > (vt +2(l/2(O))2 , 0 < t < T

which by virtue of the definition of 'U(t) is easily seen to be equivalent

to (1.6).

QED

Closing Remarks. Dafermos and Nohel [15] have recently generalized the

global existence result of MacCamy using energy methods in lieu of Riemann

invariants; their method is applicable to problems io more than one space

dimension while the Riemann invariant argument is not. Also, the authors in

[15] do not require that !a(k)()1 <:a, k = 0,1,2 , VYeR 1 but, rather,

only that a e C 3(P) with c(O) = 0, a'(O) >0. For further details the

reader may consult [15) or)the extensive discussion of this paper by Dafermos

and Nohel which is contained in Bloom [13, chp II]. More recent work on the

nonlinear viscoelastic model (1.1), (1.2) includes that of Staffens [16], and

Dafermos and Nohel [171.

Acknowledgement. This work was carried out while the author was visiting

the School of Mathematics at the University of Minnesota.



References

1. MacCamy, R.C., "A Model for One-Dimensional Nonlinear Viscoelasticity",

Q. Appl. Math., April 1977.

2. Knops, R.J., "Logarithmic Convexity and Related Techniques Applied to

Problems in Continuum Mechanics", Symp. on Non-well-posed Problems

and Logarithmic Convexity (Lecture Notes on Math. #316), pp. 31-5h,

Springer, 1973.

3. Greenberg, J.M., MacCamy, R.C., and Mizel, V.J., "On the Existence,

Uniqueness, and Stability of Solutions of the Equation

p(tt = E(x)Xxx + %)xxt", J. Math. Mech. 17 (1968), 707-728.

4. MacCamy, R.C., "Existence, Uniqueness, and Stability of
utt = /bx (a(u x ) + VUx)uxt )", Indiana Univ. Math. J., 20 (1970),

331-338.

5. Bloom, F., "Growth Estimates for Solutions to Initial-Boundary Value

Pr3blems in Viscoelasticity", J. Math. Anal. Applic. 59 (1977), 469-487.

6. Bloom, F., "Continuous Data Dependence for an Abstract Volterra Integro-

Differential Equation in Hilbert Space with Applications to Viscoelasticity",

Annali Scuola Normale Superiore-PISA, IV, (1977), 179-207.

7. Bloom, F., "Lower Bounds for Solutions to a Class of Nonlinear Integro-

differential Equations in Hilbert Space", to appear in the J. Applicable

Analysis.

8. Slemrod, M., "Instability of Steady Shearing Flows in a Nonlinear

Viscoelastic Fluid", Arch. Rat. Mech. Anal., 68 (1978), 211-225.



22

I
9. Lax, P.D., "Development of Singularities of Solutions of Nonlinear

Hyperbolic Partial Differential Equations", J. Math. Phys. 5 (1964),

611-613.

10. Coleman, B.D. and Noll, W., "Foundations of Linear Viscoelasticity",

Rev. Mod. Physics, 33 (1961), 239-249.

11. Slemrod, M., "Damped Conservation Laws in Continuum Mechanics", in

Nonlinear Analysis and Mechanics, Vol. III, Pitman Pub. (1978), 135-173.

12. Nohel, J.A., "A Forced Quasilinear Wave Equation with Dissipation",

Proc. of EQUADIFF IV, Lecture Notes in Mathematics, Vol. 703 (1977),

Springer-Verlag, 318-327.

13. Bloom, F., "Ill-Posed Problems for Integrodifferential Equations in

Mechanics and Electromagnetic Theory", SIA STUDIES IN APPLIED MATH

(in press).

14. Levine, H.A., "Instability and Nonexistence of Global Solutions to

Nonlinear Wave Equations of the Form Pu = -Au +a(u)", Trans. A.M.S.,

Vol. 192 (1974), 1-21.

15. Dafermos, C.M. and Nohel, J.A., "Energy Methods for Nonlinear Hyperbolic

VoHerra Integrodifferential Equations", Comm. PDE, Vol. 4 (1979), 219-278.

16. Staffens, 0., "On a Nonlinear Hyperbolic Volterra Equation", SIAM J.

Analysis, 11 (1980), 793-812.

17. Dafermos, C.M. and Nohel, J.A., "A Nonlinear Hyperbolic Volterra Equation

in Viscoelasticity", MRC Technical Summary Report #2095 June (1980),

University of Wisconsin.



WOO


